Immune Defense history and update

Understanding the basics of cell biology, I believe, is vital for an understanding and support for infectious disease research.  This is why I left the lab and starting learning about video games.  I am the PI on an R25 grant from the NIH, National Institute for Allergy and Infectious Diseases, awarded to the FAS Learning Technologies Program at the MICDL.org.   Game evaluation and distribution work are funded by the Entertainment Software Association Foundation.

Now I am about 3 months from releasing Immune Defense, a Real Time Strategy (RTS) game in which the player can deploy 7 types of white blood cells against bacteria, parasites, viruses and even cancer… Our goal is to teach the basics of cell biology.  What proteins do, what receptors do, how cells respond to signals in the environment, how random events lead to predictable behaviors and how the immune system is powerful at killing and how proteins allow for interpretation of signals and make their interactions specifically targeted and how pathogens manage to evade the killing…  The player must battle HIV, TB, Listeria, a Malaria-like organism and many many more.

IMMUNE DEFENSE game description:

Players use brand new Microbot technology to control cells and molecules.  Players deploy Eater cells (Neutrophils) with their LPS receptors (TLR4) to eat E. coli bacteria.  Eaters have powerful “Poison Pods” full of acid and oxidizing molecules that dissolve E. coli bacteria effectively.  All is well, until Streptococcus pneumoniae comes along and your LPS receptor no longer works…  Your trusty collaborating scientists however, have given you an upgrade, you can now control the Complement Receptor on Eater Cells.  And the Complement receptor works, however, it has a lower affinity, so it takes a bit longer to catch those rascally Streptococcus pneumoniae …  which is fine, until some Staphylococcus aureus show up.  The Staphylococcus aureus take a long time for the Eater cells to dissolve….

Immune Defense Evaluation is NOW!

Immune Defense is a cool video game.  The title is blue, the white blood cells are blue, too. And they are eating green e coli bacteria.

Join the oldest battle on Earth.

If you are a teacher of kids ~12-18 years old, you are invited to participate in our evaluation!  We warmly, eagerly and happily invite you!  We have an Amazon gift certificate to pay you back for your time.

We will happily discuss the experiment and results with you and your students after the evaluation.  Please sign up!   (www.surveymonkey.com/s/LearningGame)

Federal Funding for Science Education at NASA, NIH, NOAA and many other places you love!

The Federal Government is making moves to change how science education is funded at the federal level.

Read this article AAAS article- June 13, 2013

Read this article and email your Congress People! Do you want NASA to have an outreach program? Do you think the Department of Education wil do as good a job teaching kids about space, biomedical science or the oceans as well as NASA, NIH and NOAA do now?

Think and then act, quickly!

Call and write your Congressional representatives today!!! Especially if they are on the committee that is deciding this:
Representative

House Science & Technology Committee
Lamar Smith, TX
Dora Rohrabacher CA
Ralph Hall CA
F. James Sensenbrenner WI
Frank Lucas OK
Randy Neugebauer TX
Michael McCaul TX
Paul Broun GA
Steven Palazzo MI
Mo Brooks AL
Randy Hultgren IL
Larry Buchson IN
Steve Stockman TX
Bill Posey FL
Cynthia Lummis WY
David Schweikert AZ
Thomas Massie KY
Kevin Cramer ND
Jim Bridenstine OK
Randy Weber TX
Chris Stewart UT
Eddie Bernice Johnson TX
Zoe Lofgren CA
Dan Lipinski IL
Donna Edwards MD
Frederica Wilson FL
Suzanne Bonamici OR
Eric Swalwell CA
Dan Maffei NY
Alan Grayson FL
Joe Kennedy MA
Scott Peters CA
Derek Kilmer WA
Ami Bera CA
Elizabeth Esty CN
Marc Veasey TX
Julia Brownley CA
Mark Takano CA
Robin Kelly IL

House Appropriations Health and Human Services subcommittee
Jack Kingston GA
Rodney Alexander LA
Mike Simpson ID
Steve Womak AR
Chuck Flesichmann TN
Dave Joyce OH
Andy Harris MD
Rosa DeLauro CT
Lucille Roybal-Allard CA
Barbara Jean Lee CA
Mike Honda CA

Immune Defense–the game that has it all–needs you!

Almost readyTEACHERS!   Ever wished someone had asked for your opinion, or your kids’ opinions, while they were developing an education tool?  Well, here we are asking!  We need teachers of students aged 14-16.  Any subject!  Read about our game and see below to get involved in our evaluation.

Immune Defense has everything you could want in a video game.  It’s catchy, fun to play and full of drama:

There are Good Guys   Neutrophil and Macrophage, two Phagocytes!

and Bad GuysEcoliSingle BAD GUY

Natural Killer Cells NaturalKillerA

and cells you need to train…. to make antibodies: AntibodiesA.

 

Pathogens are tracked, caught and destroyed.  Death and Destruction

 

We know that kids remember what they use (from our research on Immune Attack).  So we gave Immune Defense players lots of things to use and lots of reasons to use them….  Good game design runs parallel to this:  More interesting decisions for the player keeps the player engaged.  One type of decion is which surface proteins you wish to express on each cell.

 

There are tough puzzles to solve.  Player use the tools they have to stop many kinds of pathogens, including E. coli, Strep, Staph, Listeria, TB and AIDS.  The tools players have are the cells of the innate and adaptive immune system.   

fun decisions

 

Immune Defense is like a moving, living textbook…. it should make teachers happy, too.   We have schematics and multiple models of various molecules:

This is the Green LPS Receptor binding the E. coli pathogen.... signaling the phagocyte that this is something to eat and kill.

This is the Green LPS Receptor binding the E. coli pathogen…. signaling the phagocyte that this is something to eat and kill.

This is what the Green LPS Receptor looks like... if you show the boundaries of its cloud of electrons around each of its atoms.

This is what the Green LPS Receptor looks like… if you show the boundaries of its cloud of electrons around each of its atoms.

We have more information in our DATA-base for curious students:

Strategic game tips as well as links to more information are in the DATA-base.

Strategic game tips as well as links to more information are in the DATA-base.

What do we need from you?  Class time and feedback both now and next Fall.  We need answers to these education research questions:

…….Do your 14-16 year old students enjoy playing Immune Defense?
…….Do your 14-16 year old students learn useful things by playing Immune Defense?
…….Can a game provide an introduction to molecular cell biology

To answer these questions we need large numbers of 14-16 year old students to play Immune Defense in their classroom. The next day they will hear short video lectures and the next day they will take our survey of what the think about the game and what they learned from it and the lecture. Other students will see the lecture first and play the game second. It may be that the lecture make the game easier to play, we don’t know yet.

NOW, this Spring, we are conducting two and three day tests. We are asking your students to play the game OR hear the video lecture and the next day take our survey.  This three day testing protocol will start in the Fall 2013.  We hope that you will participate this Spring with 1, 2 or 3 days, give us your feedback and then in the Fall conduct the full three day protocol in your classroom.

Teachers will work with the Maine International Center for Digital Learning.  www.MICDL.org.  Please register there.  Additionally, your students ate taking part in an experiment.  I, Melanie Stegman, will be very happy to Skype/Google hangout with your classes and talk about the design of our experiment and what we have demonstrated but only after your students have participated, we don’t want to affect their experience of the learning process.

Who should participate?  Well, science teachers, any kind!  Biology, chemistry, physics, anatomy, technology teachers, engineering teachers, art teachers, English teachers, Communication teachers, social studies teachers.  Thought provoking questions can come from any field:  Social studies teachers can say, If you want to sway people’s opinion about an issue, is a game a good way to do so?  What kinds of information do people need to make a decision?  Compare and contrast iCivics and Immune Defense.  Art teachers can ask their students, “Do you think the graphics in the Immune Attack game make the game easy to understand?  Do you have graphic art ideas that might make the game easier to understand?”  And if they do, please send them to us!

If  you do not teach >25 students, if you do not teach in the US, if you cannot follow the 3 day protocol in the Fall you may still evaluate the game and your students can give us some feedback: just not as much as our official evaluation.  So contact MICDL.org to register, and tell them in your first email that you just want to evaluate the game informally.  Thank you!

Here is a Maine Teaching Standard Alignments (we have not yet aligned Immune Defense to the new Common Core standards.  Anyone want to lend a hand?)

Video Games in Class; A Professional Development Course-Part Two

Game Design Document Outline

Part Two:  Integrating the design of a game into your lessons/Using video game design to get your students to interact and learn great amounts from a local scientist.

1.  Choose a topic you wish to address.  I chose “neurology.”   You can choose any topic, video game design works well in English, social studies, and   other classes.  Choose a length of time to devote to game design.  One class period, 4 weeks, or 8 weeks.  Have students turn in drafts after 1-2 days.  Iteration is very important.  So get them iterating quickly.

2.  If you are not an expert on the topic you wish to address, find an scientist to participate in this program with you.  National Lab Network, for example, is designed to connect teachers with scientists for an extended relationship.  Graduate students and post doctoral scientists are qualified to serve as experts for this purpose.  The expert should help you choose the core concepts of the topic, and provide an introductory lecture on the core concepts.  Let the students speak directly with the scientist as much as possible.

3.  The core concepts become the basis of each game.  I chose 4 concepts for my neurology lessons:  Myelin sheath creation and damage, Neurotransmitter reception and signal integration (whether the neuron fires of not after receding chemical signals from other neurons), Long term change in neurons (gene regulation in response to signals), synapse function such as neurotransmitter re-uptake).  The students choose a process and work in small groups or on their own.

4.  Schedule the program for 4-8 weeks.  Ask the expert to come once a week to discuss the details of the topic with the students.  Skype may work, as well as telephone + teamviewer.  But each group of students or each student will need 15-30 minutes per week to speak directly with the expert, and will also need to be able to communicate by email.  This level of commitment is possible to get from a graduate student, or post doctoral scientist.  They are experts in the concepts and principles of their fields and have the capacity to research facts and details on behalf of your students.

5.  Students will need to decide what they want to present in their game.  They should make a list of principles and concepts they hope to teach their players.  They may also choose to make a list of facts and vocabulary to teach.  Review this list of concepts, principles, vocabulary and facts for their relevance to the topic, for their overall importance in the field, and for their appropriateness for the target audience/your class.  For example, if your 10th grade English students plan to design a game that teaches 4 year olds to read, you may question whether that choice will teach your students the concepts and principles you expect them to learn in your class.  A better idea may be to have the 10th graders design a game for 6th graders that helps them identify metaphors and decipher them.

5. Game design documents.  Show samples, discuss what they are used for:  For the game designer to communicate to the programmer, for the designer to communicate to the funder, for a scientist to communicate with the designer.

6.  Iteration.  Just like essays, video games require editing.  Leave time for it, and also encourage students to keep track of the game ideas in a notebook, and to save their version of the game once a week.  40% of the scheduled time must be left for testing with focus groups (fellow students) and problems will arise in understanding and troubleshooting them is part of the learning process for the game designers.

7.  Paper prototypes and focus group testing.  Game design does not require computer programming.   Games are usually tested with a paper prototype anyway.  Many types of paper prototypes are used.  Additionally, PowerPoint presentations can be used to create a series of “screenshots” to describe the game.

8.  Discuss whether a different design would have presented the same ideas, whether the game misrepresents anything, how technology development is a team process, and how the final project varied from the original designs.

******************

End of the Paper Design version of Video Game Design.  The STEM Video Game Challenge has a Paper Design entry class, see their requirements here: http://www.stemchallenge.org/about/Default.aspx?Cat=MS

******************

9.  Programming.  Games can be programmed in many different programs with varying levels of programming skills required.  Game Maker, Small Basic, Unity3d, Kodu, Scratch, Game Salad, Atmosphir are a few inexpensive programming engines.  GameStar Mechanic is a commercial product that makes simple 2d games, but that does not require programming.

10.  Iteration increases engagement of target audience as well as the quality of teaching.

11.  Assessing learning.  Your students should create a 10 question survey based on the concepts they expected to convey as they began designing their game.  They can design an evaluation of learning, using principles of good experimental design:  controlled samples, an unbiased analysis, statistical analysis, etc.

12.  Discuss whether a different design would have presented the same ideas, whether the game misrepresents anything, how technology development is a team process, and how the final project varied from the original designs.

Video Games in Class–A Professional Development Course Part One

Part One:  Integrating a game into your lessons

1.  Decide what to teach.  Start with your list of Principles and Concepts you want to teach in the semester.  Games are good for conveying vocabulary and facts, but their true advantage is in conveying abstract or complex concepts.

2.  Find a game.  Consult the list of video games at the ScienceGameCenter.org.  Game suggestions welcomed, and your reviews and comments needed).  Choose the game that conveys the concepts and principles (sort games by subject).  Make sure that the chosen game will work on your classroom’s computers (sort games by platform).

3.  Design your lecture to draw on game’s graphics, situations and names.  Use the video game as an introduction to the concepts.  Choose vocabulary and graphics that highly correlate with those of the video game.  Our data shows that students who play Immune Attack are more confident in their ability to understand graphics that are similar to Immune Attack than different styled graphics of the same types of cells.

4.  Address misconceptions.    Every model is an imperfect representation of reality, so consider which aspects of the game (graphics or gameplay) may be misleading and that you may wish to directly address in your class.  For example, the cells in Immune Attack are drawn to represent the H&E stained cells we are familiar with in text books.  However, unstained cells, and live cells under a light microscope do not look this way.   After introducing H&E stained cells, that look similar to the ones in Immune Attack, you could follow up with live cells pictured through a light microscope, for example.

5.  Play related games/use related models.  Playing a related science game will show the students a different model of the same thing.  Cellcraft shows a different mRNA model than EteRNA.  Both games about mRNA, but Cellcraft puts mRNA in the context of a cell and players use mRNA to make proteins.  In EteRNA, players fold up the 2D RNA molecules and learn about base pairing.

6.  Show students the game objects are real.  Find relevant Wikipedia pages, research articles, and research labs that address the principles and concepts so that students can find more information about the topics and continue their own exploration.  This is similar to  reading the story behind your favorite characters/tools in video games and movies.

7.  Have your students review the game at ScienceGameCenter.org.  Give them extra credit for a critical thinking essay.  Give them credit for discussing the role of mRNA in a cell and whether the game simplified the roll or provided a good introduction.

8.  Some fun follow ups.  Have the students write a report on anything they discovered from the game that addresses a current research issue.  Maybe they learned mRNA is related to a disease….  Have your students re-design the game, design the next level, or add new tools/characters to the game.  Ask them to explain why they choose what they did and what the player should learn from their additions.

 

 

Video games in Class–a Teacher Development Course Introduction

Video Games in the classroom-A Professional Development Course 

Video Games like Immune Attack present scientific concepts in an intuitive format.  Watching a cell react to a chemical signal in a movie like Inner Life of the Cell is helpful in visualizing the concepts of cell biology.  But it is much more memorable if we must control the cell’s response to the chemical signal and know how it is required to vanquish the enemy bacteria that are multiplying out of control.  Additionally, many jobs involve adding art to science:  Medical Illustration, video game development, and human computer interaction are all growing fields.  Creating and even using a video game and then discussing it are excellent introductions to these fields.

 

Melanie Stegman, Ph.D. is a biochemist who is creating and evaluating the much anticipated sequel to Immune Attack.   Additionally, Dr. Stegman has served as a subject matter expert for high school students in a summer ITEST program in Washington D.C for the past two years.  Here, students enrolled in the “Be the Game” class were learning to program games in Game Maker.   Additionally, Dr Stegman has used game design to teach molecular cell biology to high school students at the American Museum of Ntural History.  Based on her extensive experience in learning games design and evaluation, Dr. Stegman has created some guidelines for getting the most out of a video games in the science classroom.

 

Two methods exist, each with their own benefits and challenges.  First, more and more games exist that address science topics, and many games exist that were not intended to address science but do.  See Dr. Stegman’s continuously updated Learning Technology Blog at The ScienceGameCenter.org for existing science-related video and card games.  Second, designing or programming a game can be an excellent project for students to work on with a collaborating scientist.  Below is an outline of what Dr. Stegman would like to present to any teacher interested in integrating video games into their science class.

 

Video Games and Historical Novels.

A serious video game is like a historical novel.  It is a story told in a setting that is somehow very accurate, but it is still a story, and it must operate under constrains similar to any other story.  A story must be engaging, or else it is not read and therefore useless.  To be engaging the story may be presented from a certain character’s perspective.  It may ignore some events.  It may misrepresent the passage of time.  Perhaps this is how the main character experienced the events.  A historical novel is different from the omniscient and disinterested voice in our textbooks, but it is a necessary addition if we are to create a deeper understanding of the past culture and history.

 

A video game can add such detail into science.  Just like a historical novel, a game may present the facts from a unique perspective, such as from the enzyme’s point of view.  This view may not be complete, but it can be enlightening and motivating to the student.  Additionally, games have a way of drawing us in and helping us process much complicated data while still making us feel like we are having fun.  Just play Angry Birds for five minutes.  You have learned about trajectories, momentum, and you have perfected by trial and error your skills (bird sling shot skills, in this case).  Because the game is well designed, you played through, longer that you may have read through a paragraph.

 

Kurt Squire writes that students learn a systemic of history from playing the game Civilization (1).  His work outlines a method, and a set of potential obstacles to account for, when introducing a video game into a classroom.  This workshop will discuss the use of video games in the classroom as a means of deepening student understanding and providing personalized relevance to facts to be learned.

 

1.  Designing Centers of Expertise for Academic Learning Through Video Games  Kurt D. Squire; Ben DeVane; Shree Durga.  Theory into Practice47:240 – 251. 2008.

 

2.  Students Designing Video Games about Immunology: Insights for Science Learning, Neda Khalili, Kimberly Sheridan, Asia Williams, Kevin Clark & Melanie Stegman.  Computers in the Schools, 28:228-240.  2011.

 

Immune Attack is free for everyone to download here:   www.ImmuneAttack.org  Watch our video of Immune Attack!

Our Learning Technologies Blog:  All of these materials are posted here.

blogs.fas.org/learningtech

Our list of video game and card games that teach science.  Please contribute!  Add games, your reviews, your students can review.  Share your experiences with other teachers and read about theirs.

ScienceGameCenter.org

Our current game is Immune Defense.  It will be a web based game, or a downloadable game for Mac and PC.   Ead more about it at

ImmuneDefenseGame.org
Stegman Video Game in the classroom Professional Development course

 

DC STEM FAIR!

I will be demonstrating Immune Attack and Immune Defense at the DC STEM Fair.  I will also teach some more professional Development classes on using games in your science classroom, so keep your eye out for that.

Right now, however, the STEM Fair needs some judges!  Are you a scientist?  Like kids?  Well, come help out and join the fun!  Register here!  Below is a description of what you will do as a judge at the DC STEM Fair:

+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_

Are you interested in encouraging young students’ appreciation for science? Do you work as a scientist, mathematician, engineer, or do you have a STEM-related degree? Are you looking for an opportunity to mentor young students in STEM?

If so, please volunteer as a judge at the DC STEM Fair!

 

The 2013 DC STEM Fair will be held on Saturday, March 23, 2013, at Wilson Senior High School. The DC STEM Fair is the annual citywide science fair for DC’s public, public charter, parochial, private, and home-schooled students in grades 6-12! The DC STEM Fair provides student participants with an opportunity to showcase their research skills and share their findings with local professionals and otherstudents in the city. Participants also have the opportunity to compete for a variety of awards and prizes offered by various government agencies, businesses, and professional associations.

As an affiliate of the Intel International Science and Engineering Fair (Intel ISEF), the first and second place overall winners at the high school level will represent the District of Columbia at Intel ISEF 2013, May 12-17, in Phoenix, AZ, with all expenses paid.

The judging period is between 9 am to 12 pm on Saturday, March 23, at Wilson Senior High School. Wilson is located at 3950 Chesapeake St NW, Washington, DC 20016, next to the Tenleytown Metro on the Red Line. We ask you to arrive at 7:45 am for orientation with a continental breakfast provided. You will be provided with clear rubrics forscoring projects that follow the Intel ISEF Guidelines.  (Rubrics can be found here: http://www.dcps.dc.gov/DCPS/Beyond+the+Classroom/DC+STEM+Fair/Resources.)

You will judge display boards and interview students in grades 6 through 12 in various categories in science,technology, engineering, and mathematics. When you register, you will have the option to give your category preferences, as well as the division (grades 6-8 or 9-12) you prefer to judge.

The deadline to register is Friday, March 1, 2013. Register to be a judge here http://dcps.dc.gov/DCPS/Beyond+the+Classroom/DC+STEM+Fair/Volunteer+to+Be+a+Judge.

Please distribute this information to scientists who may be interested.  It will be a wonderful experience both for you and your colleagues, and for our DC students, to meet each other and discuss your mutual interests in STEM as you encourage DC students in STEM!

Please also mark your calendars for the Elementary DC STEM Fair, which is scheduled for Saturday, May 18, at a location to be determined. More information about both fairs can be found at the DC STEM Fair website (http://www.dcps.dc.gov/DCPS/Beyond+the+Classroom/DC+STEM+Fair).

Science fair participation is often the first experience that inspires students to take steps to becoming professional scientists. Come see what interests the scientists of tomorrow! Please contact Sydney Bergman at sydney.bergman at dc.gov with any questions.

Welcome to Immune Defense

Our new game is a two dimensional strategy game called Immune Defense.  Seven kinds of white bloods cells can be bought and deployed in the never-ending, always-escalating war against 15 viral and bacterial pathogens.

Part 1 of Immune Defense to be released February 1, 2013.  Part 2 will be ready for beta testing In June, 2013.

Description for scientists:

Players must use the right combination of phagocytes, T-Cells and B-Cells for each combination of bacteria, viruses and parasites.  Players also regulate the type of proteins that appear on each cell’s surface and spend points to buy cells, to move drag cytokines and to activate white blood cells.  Surface proteins are required to recognize pathogens and receive signals.  Some signals cause cells to move, other cause activation, other tether cells to a location.  Activation is required for the most effective killing of pathogens… but it comes at a cost: more activated white blood cells raises your inflammation rate.  The game is over if your inflammation gets too high.  (Should have saved some points to buy a T-Reg!)

Description for Teachers:

Immune Defense is a simple, free game that anyone over 10 can play.  It is Macintosh compatible, can be played in a browser window if you have an internet connection and it can be downloaded and installed if you do not.  Low end computers can play this game.  A 30-minute period is sufficient, and a 60 minute period is not too long.  The game teaches many science standards that are appropriate for 5th through 12th grades; see below for Learning Objectives.  The game style and game play has been optimized for 9th and 10th grade students.  But we know that younger and older students enjoy the game.

Please contact me mstegman at FAS.org is you have any questions at all!  Or please add your comment below.

Evaluation of Immune Defense in Classrooms.

We are testing Immune Defense in classrooms this coming school year, and we need your help!   If you teach any subject to 9th or 10th grade and think our learning objectives, video game art, technology development, cells/proteins or nanotechnology, etc. fits into your curriculum and can give us three 45-minute periods, please see our evaluation collaborator’s website for more information on how you can join us!  Maine International Center for Digital Learning MICDL.org. 

These are the general Learning Objectives:

—Randomness of molecular diffusion
—Specificity of interactions between protein signals and protein receptors
—Low and high affinity interactions are different
—Cells have specific functions because of their unique complement of proteins
—Cells can signal to each other
—Cells respond to their environment if they have the correct receptors
—Regulating which proteins you have on hand is important for cell function
—Altering the proteins you have on hand is called cell differentiation
—Pathogens have evolved to thwart our immune system
—Viruses, bacteria and parasites have different ways of attacking and
—White blood cells, antibodies and complement factors all play different roles to combat different pathogens
—Structure and function of biologically relevant molecules and proteins
—The role of Oxidation and free radical chemistry in defense against pathogens
—Introduction to technology and nanotechnology
—Introduction to web based databases and resources
—Introduction to research methods and data presentation
—The player will see real data images of the cells and molecules presented in the game. The player will also be given their own online handbook of links to sites like Leica Microscope’s education page. Curious students can thus satisfy their quest for further information. Because links are presented in context of the game, this advanced information is meaningful to players.

 

Description for players:

Immune Defense takes place in the Immune Attack universe, chronologically, after the action in Immune Attack.  (Download our PC only, 3D game free on our site, ImmuneAttack.org!)  What we did not see in Immune Attack is that you, the new pilot who has no previous training in cell biology or immunology, accidentally and against the repeated advice of the artificial intelligence of the Microbot, gave a white blood cells a fly by.  Zooming down super close to the surface of an activated Macrophage, your Microbot was caught in an phagocytosis event.  Bitterly angry with you, the tiny, artificially intelligent Bot literally stewed for an hour in the acid and free radical oxidizing agents used by Macrophages to kill pathogens.

By the time the Bot was rescued, the acid and oxidation had done a lot of damage…  damage to your friendship with the little Bot!  However, artificial intelligence is more creative than you’d expect, and creative solutions are so much better than holding a grudge.  Every intelligent being knows that.

So the Microbot created a video game for you.  If you can master this game, Bot says, then it allow you to pilot it.  Until you master this 2D simulation of the Immune System, however, the Bot is refusing to heed your instructions.  So you’d better get busy and win this game, because your orders are to use this Microbot to heal patients… and explaining that you are having a personal disagreement with a Bot will be hard to explain to your superior.

Game Development notes:

Originally conceived as a tower defense styled game, Immune Defense originally had a Tower Defense style menu.  We found that the tower defense menu really did not help players figure out what to do.  When we thought about it, we decided our game had morphed into a real time strategy kind of game… so we spent some time working out what kind of game user interface (GUI).  We have a rough version you can play at our Testing Site.  This version still includes our tower defense styled GUI.  Soon, we’ll have a version of the game with a new GUI that matches its real time strategy mechanisms better.  You will be able to compare the two GUI’s and see for yourself what a difference they make.

Credits:

Immune Defense is a work in progress, but here are the credits so far.
Federation of American Scientists
………..Melanie Stegman, lead scientist, writer, designer, producer
………..—Jerold Council, intern and immunology text book interpreter
Cosmocyte, game development:
………..—Cameron Slayden, CMI
………..—Alec Slayden, Technical Lead
Scientific Advisory Group most helpful volunteer:
………..Howard Young, Ph.D.
Freelance programmer:
………..Ohad Frenkel

Here is the view from your Microbot cockpit.

Here is the view from your Microbot cockpit.